A VARIATIONAL PROBLEM FOR TIME OPTIMIZATION OF CUMULATIVE CHARGE FOR PSEUDOMETEORITE PARTICLES

Hristo Hristov, Viktor Baranov*, Ivan Getsov**
Defence Advanced Researches Institute, Sofia, Bulgaria
*Tula State University, Tula, Russia
**Vazov Engineering Plants, Sopot, Bulgaria

Abstract

A variational problem with unconditional extremum for time maximization of forming shaped charge pseudometeoriticat clouds is formulated. The maximal time action of pseudometeoritical clouds particies is used as input parameter. An Euler equation is derived and an internediate integral for the varied parameter- the proflle function of the inside lining is obtained.

The high performance and the small overall dimensions of cumulative charges used to form pseudometeorite particles combined with their low price make them a perspective means to test body robustness of various spacectaft in laboratory conditions. In this connection, a topical problem is studying the options for enhancing the efficiency of cumutative charges by optimizing the impact of the pseudometeorite cloud formed by them. One of the optimized parameters is the time of cloud impact on the craft's protection bartier. Here, two parameters are accounted for the original deformation with the cumulative lining's collapse as well as the subsequent deformation with the cloud's movement, which enhances the adequacy of the selected physical model.

Using hydrodynamic cumulation theory [1], we shall analyze the metal lining's plane-radial scheme of explosive deformation for the cases where cumulative charge cloud is formed, whose geometry can be described by the following equations in a Cartesian coordinate system $y O x[2]: y=F(x)$;
$y=\Phi(x) ; y=\varphi(x)$ and $y=f(x)$ for the body, charge and line couple, accordingly. All functions are continuous, smooth, the Jast two functions have positive first derivatives.

The following expression is known for the stress-load coefficient in a fixed charge section, as a function of charge geometry [1, 2]:
$\beta=\rho(x)=\frac{o_{1} F^{2} \Phi 2+o_{2} F^{2} \varphi^{2}+o_{3} \Phi^{4}+o_{1} \Phi^{2} \varphi^{2}+o_{5} \varphi^{4}}{o_{6} F^{2} \varphi^{2}+o_{7} F^{2} f^{2}+o_{8} \Phi^{2} \varphi^{2}+o_{9} \Phi^{2} f^{2}+o_{10} \varphi^{4}+o_{14} \varphi^{2} f^{2}+o_{12} f^{4}}$
where o_{1}, \ldots, o_{12} - some ratios of the densities of the body, explosive and lining materials.

Let us consider the original (with collapse) and the subsequent (with the cloud's movement) deformation of the lining - Fig.1. Points A and B Launch an inside surface element of the lining $y=f(x)$ with length $d x$, to a distance x from the origin of the coordinate system (top of lining). The collapse velocitics of this element's both ends arc $W_{0}(x)$ and $W_{0}(x)+$ $d W_{o}(x)$, accordingly. In time:

$$
t_{A C}=\frac{f(x)}{W_{0}(x)}
$$

point A reaches axis $O x$ and the element forms with axis $O x$ collapse angle $\alpha(x)$. The cumulative cloud's compactess and velocity depend on this angle's value [3]. For this time, B point is passes distance:

$$
B B^{\prime}=\left(t_{A C}-\frac{d x}{D}\right)\left(W_{0}(x)+d W_{0}(x)\right)
$$

being apart from axis $0 x$ by the distance:

$$
B^{\prime} C^{\prime}=f+d f-B B^{\prime}
$$

and forming angle $\alpha(x)$:

$$
\alpha(x)=\operatorname{arctg} \frac{B^{\prime} C^{\prime}}{d x}
$$

where

$$
t_{B^{\prime} C^{\prime}}=\frac{B^{\prime} C^{\prime}}{W_{0}(x)+d W_{0}(x)}
$$

With the element's full collapse the cut-off $C^{\prime} K$ ' is formed, with length (to simplify the expression (x) is omitted):

$$
C^{\prime} K^{\prime}=\frac{W_{1}}{W_{0}+d W_{0}}\left[f+d f-\left(\frac{f}{W_{0}}-\frac{d x}{D}\right)\left(W_{0}+d W_{0}\right)\right]-d x
$$

where $W_{t}(x)=W_{0} / \operatorname{tg}(x)$ - the clement's Iaunch velocity with collapse. Let us demand that: $\operatorname{tg} \alpha=K=$ const, where K is the tangent of angle α at which onc may purposefully influence the cloud's compactness or discreteness [3, 4]. be:

Then, the intitial relative deformation in the end of the collapse will

$$
\begin{equation*}
\varepsilon_{0}(x)=\frac{C^{\prime} K^{\prime}}{d x} \tag{1}
\end{equation*}
$$

The cut-off $K^{\prime \prime} C^{\prime \prime}$ is determined by expression:

$$
K^{\prime \prime} C^{\prime \prime}(x, t)=W_{1}(x) t(x)-W_{1}(x+d x)\left(t(x)-\frac{d x}{d}\right)-d x
$$

But $\quad t(x)=t-\left(\frac{x}{d}-\frac{f}{W_{0}}\right)$.
Then, the deformation may be expressed as:

$$
\varepsilon(x, t)=\frac{K^{\prime \prime} C^{\prime \prime}(x, t)-\sqrt{d x^{2}-d f^{2}}}{\sqrt{d x^{2}-d f^{2}}}
$$

Finally, after transformations we obtain:
(2)

$$
\varepsilon(x, t)=\frac{\frac{d W_{1}}{d x}\left(\frac{x}{D}+\frac{f}{W_{0}}-t\right)+\frac{W_{1}}{D}-\frac{f^{\prime 2}}{2}-2}{1+\frac{f^{\prime 2}}{2}}=[\varepsilon]
$$

where $[\varepsilon]$ - the s stress-load deformation's marginal value for the lining material.

Then, the gencral time functional of cumulative lining collapse, accounting for the allowed lining material deformation will have the form:

$$
\begin{equation*}
T=\int_{0}^{H} S\left(x, f, f^{\prime}\right) d x \tag{3}
\end{equation*}
$$

where

$$
\begin{aligned}
& S\left(x, f, f^{\prime}\right)= \frac{1}{D}+\frac{2}{D} \frac{f^{\prime} \beta(2+\beta)-f \beta^{\prime}}{\beta \sqrt{\beta(2+\beta)}}+\frac{1}{D} \frac{\beta^{\prime 2}-\beta^{\prime \prime} \beta^{\prime}(2+\beta)+\beta^{\prime 2}(1-\beta)}{\beta^{\prime 2}}- \\
&-\frac{(2+\beta)}{\beta^{\prime 2} \sqrt{\beta(2+\bar{\beta})}} \operatorname{tg} \alpha \frac{1}{D}\left\{(1+[\varepsilon])\left[\beta(2+\beta)\left(f^{\prime \prime} \beta^{\prime}-f^{\prime} \beta^{\prime \prime}\right)+(1-\beta) f^{\prime} \beta^{\prime 2}\right]-\right. \\
&\left.\left.-2(2+[\varepsilon]) \mid \beta^{\prime \prime} \beta(2+\beta)-\beta^{\prime 2}(1-\beta)\right]\right\} .
\end{aligned}
$$

With the adopted symbols, Eulcr's equation will be [5]:

$$
\begin{equation*}
S_{f}^{\prime}-S_{x f^{\prime}}^{\prime \prime}-S_{f^{\prime}}^{\prime \prime} \frac{d f}{d x}-S_{f f}^{\prime \prime} \frac{d^{2} f}{d x^{2}}=0 \tag{4}
\end{equation*}
$$

(5)

$$
f(0)=f 0 ; f(H)=f H,
$$

where H is the cumulative lining's altitude.
Since in the righthand side of (3) x does not participatc immediately, in the left-hand side of (4) the second term, $S_{x f^{\prime}}^{\prime \prime}=0$, is missing, and we can write the intermediate integral [5]:

$$
\begin{equation*}
S-S_{f^{\prime}}^{\prime} \frac{d f}{d x}=C_{1} \tag{6}
\end{equation*}
$$

which yields:
(7)

$$
\begin{aligned}
& \frac{1}{D}+\frac{2}{D} \frac{f^{\prime} \beta(2+\beta)-f \beta^{\prime}}{\beta \sqrt{\beta(2+\beta)}}+\frac{1}{D} \frac{\beta^{\prime 2}-\beta^{\prime \prime} \beta^{\prime}(2+\beta)+\beta^{\prime 2}(1-\beta)}{\beta^{\prime 2}}- \\
& -\frac{1}{D} \operatorname{tg} \alpha\left(1+[\varepsilon)(2+\beta) \frac{\beta(2+\beta)\left(f^{\prime \prime} \beta^{\prime}-f \beta^{\prime \prime}\right)+(1-\beta) f \beta^{\prime 2}}{\beta^{\prime 2} \sqrt{\beta(2+\beta)}}-f^{\prime}\left\{\frac{2}{D} \frac{\beta(2+\beta)-f\left(\beta^{\prime}\right) f^{\prime}}{\beta \sqrt{\beta(2+\beta)}}+\right.\right. \\
& +\frac{1}{D} \frac{1}{\beta^{\prime \prime}}\left\{\left\{2 \beta\left(\beta^{\prime}\right)_{f^{\prime}}^{\prime}-(2+\beta)\left\{\left(\beta^{\prime \prime}\right)_{f^{\prime}}^{\prime} \beta^{\prime}+\beta^{\prime \prime}\left(\beta^{\prime}\right)_{f^{\prime}}^{\prime}\right]+2(1-\beta) \beta^{\prime}\left(\beta^{\prime}\right)_{f^{\prime}}^{\prime}\right\} \beta^{\prime 2}-2\left[\beta^{\prime 2}-\right.\right.
\end{aligned}
$$

$$
\begin{aligned}
& \left.\left.-\beta \prime \beta(2+\beta)+\beta^{2}(1-\beta)\right] \beta\left(\beta^{\prime}\right)_{\prime^{\prime}}^{\prime}\right\}-\frac{1}{D} \operatorname{tg} \frac{\alpha}{2}(1+[\varepsilon]) \frac{2+\beta}{\sqrt{\beta(2+\beta)}} \frac{1}{\beta^{4}}\left\{\beta (2 + \beta) \left[f^{\prime \prime}(\beta)_{f^{\prime}-}^{\prime}\right.\right. \\
& \left.\left.-\left(\beta^{\prime \prime}+f^{\prime}\left(\beta^{\prime \prime}\right)_{f^{\prime}}\right)\right]+(1-\beta)\left(\beta^{\prime 2}+2 f^{\prime} \beta^{\prime}\left(\beta^{\prime}\right)_{f^{\prime}}^{\prime}\right)\right\} \beta^{\prime 2}-2\left[\beta(2+\beta)\left(f^{\prime \prime} \beta^{\prime}-f^{\prime} \beta^{\prime}\right)_{+}\right. \\
& \left.-(1-\beta) f^{\prime} \beta^{\prime 2}\right] \beta^{\prime}\left(\beta^{\prime}\right)_{f^{\prime}}^{\prime}+\frac{2}{D} \operatorname{tg} \frac{\alpha}{2}(2+[\varepsilon]) \frac{2+\beta}{\sqrt{\beta(2+\beta)}} \frac{1}{\beta^{\prime 4}}\left\{\left[\beta \left(2+\beta\left(\beta^{\prime \prime}\right)_{f^{\prime}-}^{\prime}\right.\right.\right. \\
& \left.\left.-2(1-\beta) \beta^{\prime}\left(\beta^{\prime}\right)_{f^{\prime}}^{\prime}\right] \beta^{\prime 2}-2\left[\beta^{\prime \prime} \beta(2+\beta)-\beta^{\prime 2}(1-\beta)\right] \beta^{\prime}\left(\beta^{\prime}\right)_{f^{\prime}}^{\prime}\right\}=C_{1}
\end{aligned}
$$

where C_{I} is the integration constant;
$\beta^{\prime}, \beta^{\prime \prime},\left(\beta^{\prime}\right)^{\prime},\left(\beta^{\prime \prime}\right)^{\prime}$ are derivatives of the stress-load cocflicion.
As a result, the variational problem for time optimization of a pseudomoteorite cloud cumulative charge effect is formulated and an intermediate integral (7) is obtained. The problem requires locating the unconditional maximum of functional (3) with cdge conditions (5). The varied parameter is the function describing the inside surface lining profile. It makes no problem to change this varied parameter for another parameter of the cumulative charge geometry. The problem is interesting in that, in functional (3), there is an option to control the cloud's digitization rate by varying parameter $[\varepsilon]$.

Reforences

1. Physics of Detonation K. S. Stanjukovitch, Moscow, Science, 1973, 703.
2. IT. I. Hristov, Ph.fy. Thesis, Tula Unversity, Tula, Russia, 1993,146
3. N. A. Z 1 a $:$ In, About Maximum Speds of a Solid Condensed Cumulative Chatge Jets. Problem of Matheriatics and Mechanics. Novosibirsk, Science, 1983.
4. S. K. Godunoy, A. A. Derybas. I. V. Maly, Abom Taluencing Material Viscosity in the frocess of Jers Fomation at Impact ol Metallic Laminas. - Physics of Combustion and Detomation. Novosilitsk, Scjence, 1975, No.1, 3-18.
5. J. B. Z.eldowitch, A. D. Mishkis. Members of Applied Wathematics. Moscow, Scicnce, 1967.

Fig. 1. The scheme of the intial and subsequent deformation of the cumulative lining.

ЗАДАЧАЗА ОПТИМИЗАДИЯ ПО ВРЕМЕТО НА ЕФЕКТА ОТ ДЕЙСТВИЕТО НА ПСЕВДОМЕТЕОРИТЕН ОБЛАК

Христо Христов, Виктор Баранов, Иван Гечов

Резюме

Формултрана е вариационна зажана с безусловен екстремум за оптимизация на кумулативен заряд за псевдометеоритни частици по параметър максимално време на действие на облака от псевдометеоритни частици, изведено е уравнение ва Ойлер и е получен промеждутьчен интеграл за параметьра на вариране - функцията на профила на вьтрешната повьрхност на облицовката.

